(相关资料图)
0. 写在前面超级简单的模拟退火算法实现ε٩(๑> ₃ <)۶з搭配最简单的线性规划模型进行讲解!但是如果需要的话可以直接修改编程非线性问题哦(´つヮ⊂︎)
1. 模型描述及处理1.1 线性规划模型\[max\,f(x)=10x_1+9x_2\]\(s.t.\)
\[6x_1+5x_2\leq{60}\tag{1}\]\[10x_1+20x_2\leq{150}\tag{2}\]\[0\leq{x_1}\leq{8}\tag{3}\]\[0\leq{x_2}\leq{8}\tag{4}\]1.2 引入惩罚函数处理模型对约束条件引入惩罚函数:
对约束条件(1),惩罚函数为:\(p_1=max(0,6x_1+5x_2-60)^2\)
对约束条件(2),惩罚函数为:\(p_2=max(0,10x_1+20x_2-150)^2\)
那么,该问题的惩罚函数可以表示为:
\[P(x)=p_1+p_2\]由此,可将该问题的约束条件放入目标函数中,此时模型变为:
\[min\,g(x)=-(10x_1+9x_2)+P(x)\quad\forall{x_1,x_2}\in{[0,8]}\]2. 程序实现# 模拟退火算法 程序:求解线性规划问题(整数规划)# Program: SimulatedAnnealing_v4.py# Purpose: Simulated annealing algorithm for function optimization# v4.0: 整数规划:满足决策变量的取值为整数(初值和新解都是随机生成的整数)# Copyright 2021 YouCans, XUPT# Crated:2021-05-01# = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =# -*- coding: utf-8 -*-import math # 导入模块import random # 导入模块import pandas as pd # 导入模块 YouCans, XUPTimport numpy as np # 导入模块 numpy,并简写成 npimport matplotlib.pyplot as pltfrom datetime import datetime # 子程序:定义优化问题的目标函数def cal_Energy(X, nVar, mk): # m(k):惩罚因子,随迭代次数 k 逐渐增大 p1 = (max(0, 6*X[0]+5*X[1]-60))**2 p2 = (max(0, 10*X[0]+20*X[1]-150))**2 fx = -(10*X[0]+9*X[1]) return fx+mk*(p1+p2) # 子程序:模拟退火算法的参数设置def ParameterSetting(): cName = "funcOpt" # 定义问题名称 YouCans, XUPT nVar = 2 # 给定自变量数量,y=f(x1,..xn) xMin = [0, 0] # 给定搜索空间的下限,x1_min,..xn_min xMax = [8, 8] # 给定搜索空间的上限,x1_max,..xn_max tInitial = 100.0 # 设定初始退火温度(initial temperature) tFinal = 1 # 设定终止退火温度(stop temperature) alfa = 0.98 # 设定降温参数,T(k)=alfa*T(k-1) meanMarkov = 100 # Markov链长度,也即内循环运行次数 scale = 0.5 # 定义搜索步长,可以设为固定值或逐渐缩小 return cName, nVar, xMin, xMax, tInitial, tFinal, alfa, meanMarkov, scale # 模拟退火算法def OptimizationSSA(nVar,xMin,xMax,tInitial,tFinal,alfa,meanMarkov,scale): # ====== 初始化随机数发生器 ====== randseed = random.randint(1, 100) random.seed(randseed) # 随机数发生器设置种子,也可以设为指定整数 # ====== 随机产生优化问题的初始解 ====== xInitial = np.zeros((nVar)) # 初始化,创建数组 for v in range(nVar): # xInitial[v] = random.uniform(xMin[v], xMax[v]) # 产生 [xMin, xMax] 范围的随机实数 xInitial[v] = random.randint(xMin[v], xMax[v]) # 产生 [xMin, xMax] 范围的随机整数 # 调用子函数 cal_Energy 计算当前解的目标函数值 fxInitial = cal_Energy(xInitial, nVar, 1) # m(k):惩罚因子,初值为 1 # ====== 模拟退火算法初始化 ====== xNew = np.zeros((nVar)) # 初始化,创建数组 xNow = np.zeros((nVar)) # 初始化,创建数组 xBest = np.zeros((nVar)) # 初始化,创建数组 xNow[:] = xInitial[:] # 初始化当前解,将初始解置为当前解 xBest[:] = xInitial[:] # 初始化最优解,将当前解置为最优解 fxNow = fxInitial # 将初始解的目标函数置为当前值 fxBest = fxInitial # 将当前解的目标函数置为最优值 print("x_Initial:{:.6f},{:.6f},\tf(x_Initial):{:.6f}".format(xInitial[0], xInitial[1], fxInitial)) recordIter = [] # 初始化,外循环次数 recordFxNow = [] # 初始化,当前解的目标函数值 recordFxBest = [] # 初始化,最佳解的目标函数值 recordPBad = [] # 初始化,劣质解的接受概率 kIter = 0 # 外循环迭代次数,温度状态数 totalMar = 0 # 总计 Markov 链长度 totalImprove = 0 # fxBest 改善次数 nMarkov = meanMarkov # 固定长度 Markov链 # ====== 开始模拟退火优化 ====== # 外循环,直到当前温度达到终止温度时结束 tNow = tInitial # 初始化当前温度(current temperature) while tNow >= tFinal: # 外循环,直到当前温度达到终止温度时结束 # 在当前温度下,进行充分次数(nMarkov)的状态转移以达到热平衡 kBetter = 0 # 获得优质解的次数 kBadAccept = 0 # 接受劣质解的次数 kBadRefuse = 0 # 拒绝劣质解的次数 # ---内循环,循环次数为Markov链长度 for k in range(nMarkov): # 内循环,循环次数为Markov链长度 totalMar += 1 # 总 Markov链长度计数器 # ---产生新解 # 产生新解:通过在当前解附近随机扰动而产生新解,新解必须在 [min,max] 范围内 # 方案 1:只对 n元变量中的一个进行扰动,其它 n-1个变量保持不变 xNew[:] = xNow[:] v = random.randint(0, nVar-1) # 产生 [0,nVar-1]之间的随机数 xNew[v] = round(xNow[v] + scale * (xMax[v]-xMin[v]) * random.normalvariate(0, 1)) # 满足决策变量为整数,采用最简单的方案:产生的新解按照四舍五入取整 xNew[v] = max(min(xNew[v], xMax[v]), xMin[v]) # 保证新解在 [min,max] 范围内 # ---计算目标函数和能量差 # 调用子函数 cal_Energy 计算新解的目标函数值 fxNew = cal_Energy(xNew, nVar, kIter) deltaE = fxNew - fxNow # ---按 Metropolis 准则接受新解 # 接受判别:按照 Metropolis 准则决定是否接受新解 if fxNew < fxNow: # 更优解:如果新解的目标函数好于当前解,则接受新解 accept = True kBetter += 1 else: # 容忍解:如果新解的目标函数比当前解差,则以一定概率接受新解 pAccept = math.exp(-deltaE / tNow) # 计算容忍解的状态迁移概率 if pAccept > random.random(): accept = True # 接受劣质解 kBadAccept += 1 else: accept = False # 拒绝劣质解 kBadRefuse += 1 # 保存新解 if accept == True: # 如果接受新解,则将新解保存为当前解 xNow[:] = xNew[:] fxNow = fxNew if fxNew < fxBest: # 如果新解的目标函数好于最优解,则将新解保存为最优解 fxBest = fxNew xBest[:] = xNew[:] totalImprove += 1 scale = scale*0.99 # 可变搜索步长,逐步减小搜索范围,提高搜索精度 # ---内循环结束后的数据整理 # 完成当前温度的搜索,保存数据和输出 pBadAccept = kBadAccept / (kBadAccept + kBadRefuse) # 劣质解的接受概率 recordIter.append(kIter) # 当前外循环次数 recordFxNow.append(round(fxNow, 4)) # 当前解的目标函数值 recordFxBest.append(round(fxBest, 4)) # 最佳解的目标函数值 recordPBad.append(round(pBadAccept, 4)) # 最佳解的目标函数值 if kIter%10 == 0: # 模运算,商的余数 print("i:{},t(i):{:.2f}, badAccept:{:.6f}, f(x)_best:{:.6f}".\ format(kIter, tNow, pBadAccept, fxBest)) # 缓慢降温至新的温度,降温曲线:T(k)=alfa*T(k-1) tNow = tNow * alfa kIter = kIter + 1 fxBest = cal_Energy(xBest, nVar, kIter) # 由于迭代后惩罚因子增大,需随之重构增广目标函数 # ====== 结束模拟退火过程 ====== print("improve:{:d}".format(totalImprove)) return kIter,xBest,fxBest,fxNow,recordIter,recordFxNow,recordFxBest,recordPBad# 结果校验与输出def ResultOutput(cName,nVar,xBest,fxBest,kIter,recordFxNow,recordFxBest,recordPBad,recordIter): # ====== 优化结果校验与输出 ====== fxCheck = cal_Energy(xBest, nVar, kIter) if abs(fxBest - fxCheck)>1e-3: # 检验目标函数 print("Error 2: Wrong total millage!") return else: print("\nOptimization by simulated annealing algorithm:") for i in range(nVar): print("\tx[{}] = {:.1f}".format(i,xBest[i])) print("\n\tf(x) = {:.1f}".format(cal_Energy(xBest,nVar,0))) return# 主程序def main(): # YouCans, XUPT # 参数设置,优化问题参数定义,模拟退火算法参数设置 [cName, nVar, xMin, xMax, tInitial, tFinal, alfa, meanMarkov, scale] = ParameterSetting() # print([nVar, xMin, xMax, tInitial, tFinal, alfa, meanMarkov, scale]) # 模拟退火算法 [kIter,xBest,fxBest,fxNow,recordIter,recordFxNow,recordFxBest,recordPBad] = OptimizationSSA(nVar,xMin,xMax,tInitial,tFinal,alfa,meanMarkov,scale) # print(kIter, fxNow, fxBest, pBadAccept) # 结果校验与输出 ResultOutput(cName, nVar,xBest,fxBest,kIter,recordFxNow,recordFxBest,recordPBad,recordIter) if __name__ == "__main__": main()
输出结果:
x_Initial:0.000000,4.000000,f(x_Initial):-36.000000i:0,t(i):100.00, badAccept:0.925373, f(x)_best:-152.000000i:10,t(i):81.71, badAccept:0.671053, f(x)_best:-98.000000i:20,t(i):66.76, badAccept:0.722892, f(x)_best:-98.000000i:30,t(i):54.55, badAccept:0.704225, f(x)_best:-98.000000i:40,t(i):44.57, badAccept:0.542169, f(x)_best:-98.000000i:50,t(i):36.42, badAccept:0.435294, f(x)_best:-98.000000i:60,t(i):29.76, badAccept:0.359551, f(x)_best:-98.000000i:70,t(i):24.31, badAccept:0.717647, f(x)_best:-98.000000i:80,t(i):19.86, badAccept:0.388235, f(x)_best:-98.000000i:90,t(i):16.23, badAccept:0.555556, f(x)_best:-98.000000i:100,t(i):13.26, badAccept:0.482353, f(x)_best:-98.000000i:110,t(i):10.84, badAccept:0.527473, f(x)_best:-98.000000i:120,t(i):8.85, badAccept:0.164948, f(x)_best:-98.000000i:130,t(i):7.23, badAccept:0.305263, f(x)_best:-98.000000i:140,t(i):5.91, badAccept:0.120000, f(x)_best:-98.000000i:150,t(i):4.83, badAccept:0.422680, f(x)_best:-98.000000i:160,t(i):3.95, badAccept:0.111111, f(x)_best:-98.000000i:170,t(i):3.22, badAccept:0.350000, f(x)_best:-98.000000i:180,t(i):2.63, badAccept:0.280000, f(x)_best:-98.000000i:190,t(i):2.15, badAccept:0.310000, f(x)_best:-98.000000i:200,t(i):1.76, badAccept:0.390000, f(x)_best:-98.000000i:210,t(i):1.44, badAccept:0.390000, f(x)_best:-98.000000i:220,t(i):1.17, badAccept:0.380000, f(x)_best:-98.000000improve:10Optimization by simulated annealing algorithm:x[0] = 8.0x[1] = 2.0f(x) = -98.0
X 关闭
2021年北向资金流入超4300亿元 外资热情拥抱中国资产
尽管面临疫情反复等多重不利因素,外资在2...北交所董事长徐明:北交所成立以来股票平均上涨98.9%
北京证券交易所董事长徐明8日表示,北交所...宁吉喆:2021年中国GDP将连续第二年超百万亿元
中国国家发改委副主任兼中国国家统计局...中国黄金消费市场渐回暖 “古法金”饰品获年轻消费者青睐
2022世界珠宝发展大会正在海口举行。8日在...观察:中国首条民营控股高铁开通之“时”与“势”
杭台高铁首趟列车即将发车。张煜欢摄1月8...中国生态环境保护实现“十四五”起步之年良好开局
中国生态环境部7日在北京召开2022年全国...人社部发布信用管理师国家职业技能标准
近日,人力资源和社会保障部对外发布了《...云南永善佛滩顺河梯级电站全面推进建设
日前,云南省永善县顺河村举行了佛滩顺河...中老铁路的背后 “税务专车”一路同行
2021年12月3日中老铁路正式开通运营,仅需...哈啰出行投资成立装饰工程公司 注册资本200万元
企查查APP显示,3月18日,上海钧住装饰工程有限公司成立,法定代表...Copyright © 2015-2032 华西建筑工程网版权所有 备案号:京ICP备2022016840号-35 联系邮箱: 920 891 263@qq.com